Epigenetic Modifiers in the Pathogenesis of Follicular Lymphoma

Riccardo Dalla-Favera, MD

Columbia University

Indolent Lymphoma Workshop Bologna May 2017

Epigenetic mechanisms and transcriptional regulation

Genetic-based aberrant epigenetic regulation in lymphoma

Mutations of MLL2 and CREBBP are mostly monoallelic, suggesting a haploinsufficient tumor suppressor role

Genetic lesions in Histone Methyltransferases

Genetic lesions in Histone Acetyltransferases

MII2 loss is acquired early during clonal expansion and cooperates with BCL2 deregulation in lymphoma

Genetic lesions in Histone Methyltransferases

> Genetic lesions in Histone Acetyltransferases

Role of CREBBP inactivation in B cell lymphoma

inactivation

BCL6

p53

activation

Role of CREBBP inactivation in B cell lymphoma

Defining the transcriptional network regulated by CREBBP in GC B cells – Experimental Strategy

CREBBP binds preferentially to TSS-distal regions decorated by H3K27Ac and H3K4me1 marks

CREBBP-bound regions are enriched in "light-zone" upregulated genes, including master regulators of plasma cell differentiation

b. ChIP-Seq

A full complement of CREBBP is necessary for efficient plasma cell differentiation (*ex vivo*)

CREBBP heterozygous and homozygous null B cells have proliferative advantage

* *p*<0.05; ** *p*<0.01

CREBBP is involved in the activation of BCL6-repressed genes

T cell mediated activation CD86, ICOSLG

transcription of its repressed genes

Loss of one *Crebbp* allele facilitates BCL2-driven follicular lymphoma development

d.

What did we learn?

Consequences of CREBBP inactivation in the GC

Therapeutic targeting of the CBP network

Acknowledgements

Institute for Cancer Genetics Columbia University

Carol Ying **Christof Schneider** Paola Brescia Madhavi Malladi Yen Lieu Marco Fangazio Friederike H. Schwartz **Benjamin Tischler** Marion Bossennec Jonathan Mandelbaum Masumichi Saito Qiong Shen Michelle Wu Tongwei Mo Hongyan Tan **David Dominguez-Sola**

Antony Holmes Katia Basso

Govind Bhagat

Ning Kong Wei Gu Jijuan Zhang Monica Messina Sofija Vlasevska Victoria A Wells Annalisa Chiarenza Adina Grunn

Laura Pasqualucci

C2B2, Columbia University

Vladimir Trifonov Hossein Khiabanian **Raul Rabadan**

Staten Island University Hospital Shafinaz Hussein

Northwestern University Amy Chadburn

European Institute of Oncology Stefano Pileri

CRCT Toulouse Pierre Brousset

Common and distinct pathways in DLBCL subtypes

